# This is an automatically generated code sample.
# To make this code sample work in your Oracle Cloud tenancy,
# please replace the values for any parameters whose current values do not fit
# your use case (such as resource IDs, strings containing ‘EXAMPLE’ or ‘unique_id’, and
# boolean, number, and enum parameters with values not fitting your use case).
import oci
# Create a default config using DEFAULT profile in default location
# Refer to
# https://docs.cloud.oracle.com/en-us/iaas/Content/API/Concepts/sdkconfig.htm#SDK_and_CLI_Configuration_File
# for more info
config = oci.config.from_file()
# Initialize service client with default config file
data_science_client = oci.data_science.DataScienceClient(config)
# Send the request to service, some parameters are not required, see API
# doc for more info
update_model_deployment_response = data_science_client.update_model_deployment(
model_deployment_id="ocid1.test.oc1..<unique_ID>EXAMPLE-modelDeploymentId-Value",
update_model_deployment_details=oci.data_science.models.UpdateModelDeploymentDetails(
display_name="EXAMPLE-displayName-Value",
description="EXAMPLE-description-Value",
model_deployment_configuration_details=oci.data_science.models.UpdateSingleModelDeploymentConfigurationDetails(
deployment_type="SINGLE_MODEL",
model_configuration_details=oci.data_science.models.UpdateModelConfigurationDetails(
model_id="ocid1.test.oc1..<unique_ID>EXAMPLE-modelId-Value",
instance_configuration=oci.data_science.models.InstanceConfiguration(
instance_shape_name="EXAMPLE-instanceShapeName-Value",
model_deployment_instance_shape_config_details=oci.data_science.models.ModelDeploymentInstanceShapeConfigDetails(
ocpus=19.623642,
memory_in_gbs=433.43103,
cpu_baseline="BASELINE_1_1"),
subnet_id="ocid1.test.oc1..<unique_ID>EXAMPLE-subnetId-Value",
private_endpoint_id="ocid1.test.oc1..<unique_ID>EXAMPLE-privateEndpointId-Value"),
scaling_policy=oci.data_science.models.AutoScalingPolicy(
policy_type="AUTOSCALING",
auto_scaling_policies=[
oci.data_science.models.ThresholdBasedAutoScalingPolicyDetails(
auto_scaling_policy_type="THRESHOLD",
rules=[
oci.data_science.models.PredefinedMetricExpressionRule(
metric_expression_rule_type="PREDEFINED_EXPRESSION",
metric_type="CPU_UTILIZATION",
scale_in_configuration=oci.data_science.models.PredefinedExpressionThresholdScalingConfiguration(
scaling_configuration_type="THRESHOLD",
threshold=106,
pending_duration="EXAMPLE-pendingDuration-Value",
instance_count_adjustment=348))],
maximum_instance_count=5,
minimum_instance_count=181,
initial_instance_count=2)],
cool_down_in_seconds=615,
is_enabled=False),
bandwidth_mbps=5794,
maximum_bandwidth_mbps=4304),
environment_configuration_details=oci.data_science.models.UpdateOcirModelDeploymentEnvironmentConfigurationDetails(
environment_configuration_type="OCIR_CONTAINER",
image="EXAMPLE-image-Value",
image_digest="EXAMPLE-imageDigest-Value",
cmd=["EXAMPLE--Value"],
entrypoint=["EXAMPLE--Value"],
server_port=972,
health_check_port=827,
environment_variables={
'EXAMPLE_KEY_gt5OW': 'EXAMPLE_VALUE_RbhUrKCTGHN83rJ5pkyt'})),
category_log_details=oci.data_science.models.UpdateCategoryLogDetails(
access=oci.data_science.models.LogDetails(
log_id="ocid1.test.oc1..<unique_ID>EXAMPLE-logId-Value",
log_group_id="ocid1.test.oc1..<unique_ID>EXAMPLE-logGroupId-Value"),
predict=oci.data_science.models.LogDetails(
log_id="ocid1.test.oc1..<unique_ID>EXAMPLE-logId-Value",
log_group_id="ocid1.test.oc1..<unique_ID>EXAMPLE-logGroupId-Value")),
freeform_tags={
'EXAMPLE_KEY_XeNbl': 'EXAMPLE_VALUE_4xTYviUPY7Nwm14GKnKq'},
defined_tags={
'EXAMPLE_KEY_awHUd': {
'EXAMPLE_KEY_0LrR0': 'EXAMPLE--Value'}}),
if_match="EXAMPLE-ifMatch-Value",
opc_request_id="EWWCRWJQ6OEBTSWHN9CS<unique_ID>")
# Get the data from response
print(update_model_deployment_response.headers)