SAP NetWeaver® Application Server ABAP/Java on Oracle Database Exadata Cloud Service
Based on Oracle Exadata X7

ORACLE WHITE PAPER | AUGUST 2019
Disclaimer

The following is intended to outline our general product direction. It is intended for information purposes only and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.

Revision History

The following revisions have been made to this white paper since its initial publication:

<table>
<thead>
<tr>
<th>Date</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 30, 2019</td>
<td>• Revised for new Oracle Exadata X7 image based on Oracle Linux 7, and for Oracle Grid Infrastructure 19c and Oracle Transparent Data Encryption.</td>
</tr>
<tr>
<td>February 28, 2019</td>
<td>• Added information about Oracle Exadata X7</td>
</tr>
<tr>
<td></td>
<td>• Added information about support for Oracle Database Release 18c with SAP for Exadata Cloud Service</td>
</tr>
</tbody>
</table>
Table of Contents

Scope and Assumptions 5

Overview of Oracle Database Exadata Cloud Service 6
 - Oracle Database for SAP with Exadata Cloud Service 6
 - Regions and Availability Domains 6
 - Oracle Cloud Infrastructure Services 7
 - Exadata Cloud Service Instances 8

Planning Your Exadata Cloud Service for SAP NetWeaver Application Server ABAP/Java 11
 - Prerequisites 11
 - Deployment Restrictions with SAP for Exadata Cloud Service 11
 - Licenses 12
 - Support 12
 - Documentation 13
 - Workload Size 13

Planning the SAP Deployment 14
 - What You Need 14
 - General Installation Overview 15

Implementing the Deployment 17
 - Get Your Oracle Cloud Infrastructure Account 17
 - Deploy the Oracle Cloud Infrastructure Resources 17
 - Prepare Your Environment 20
 - Prepare Exadata Compute Nodes 21
 - Install SAP NetWeaver Application Server ABAP/Java 28
 - Install the Primary Application Server 45
 - Revert Changes on the Exadata Compute Nodes and the SAP Application Servers 49
Enable Transparent Data Encryption for All Tablespaces

SAP Bundle Patch for Oracle Database Exadata Cloud Service: Life Cycle Management for SAP Databases

Installation of Patches for Oracle RDBMS Software
Installation of Patches for the Oracle Database Exadata Cloud Service Tooling
Installation of Operating System Patches

High Availability with Oracle Data Guard

References

SAP

Oracle
Scope and Assumptions

This technical white paper is a reference guide for deploying Oracle databases of the SAP NetWeaver® Application Server ABAP/Java platform on the Oracle Database Exadata Cloud Service, based on Oracle Exadata X7 hardware and using Oracle Linux 7, in Oracle Cloud Infrastructure. It also provides details about combining the different parts of Oracle Database Exadata Cloud Service, Oracle Linux, Oracle Virtualization, Oracle Grid Infrastructure instances, Oracle Database instances, and SAP Infrastructure components to run Oracle databases for software products based on SAP NetWeaver Application Server ABAP/Java on Oracle Database Exadata Cloud Service.

Note: We do not support using Oracle Database Exadata Cloud Service for SAP NetWeaver Application Server ABAP/Java instances except for SAP Central Services. SAP NetWeaver Application Server ABAP/Java Instances must be installed on separate servers within the Oracle Cloud Infrastructure, such as Oracle Cloud Infrastructure Compute instances (bare metal or virtual machine instances).

This paper is not a full reference for SAP NetWeaver Application Server ABAP/Java. Rather, it is a description of how to plan and implement an SAP landscape in the cloud in a supported and verified way.

This paper assumes the following knowledge:

- You are familiar with the fundamentals of Oracle Database Exadata Cloud Service and Oracle Cloud Infrastructure. For information, see the following resources:
 - Oracle Database Exadata Cloud Service
 - Oracle Cloud Infrastructure – Exadata DB Systems
 - Oracle Cloud Infrastructure

- You have advanced administrative skills in SAP NetWeaver Application Server ABAP/Java using Oracle Database and Oracle Linux. For more information, see the following resources:

- You are familiar with the documentation for the following products:
 - Oracle Grid Infrastructure 19c and the Oracle Database releases that you will use
 - Oracle Linux 7
 - SAP NetWeaver 7.x
Overview of Oracle Database Exadata Cloud Service

The Oracle Database Exadata Cloud Service enables full-featured Oracle databases to run on the Exadata platform in the Oracle public cloud. Exadata Cloud Service instances are preconfigured according to best practices that have been proven at thousands of mission-critical Exadata sites around the world.

Depending on the subscription model, you can have full access to the features and operations available in the following products, but with Oracle owning and managing the Exadata infrastructure:

- Oracle Grid Infrastructure
- Oracle Database, including Oracle Real Application Clusters (RAC)
- Oracle Automatic Storage Management Cluster File System (Oracle ACFS)
- SAP Infrastructure components for installation (Software Provisioning Manager)
- Database Administration (BR*Tools)
- SAP High Availability for SAP Central Services

Oracle Database for SAP with Exadata Cloud Service

All options and features of the following Oracle Database releases are supported and certified for Exadata Cloud Service:

- Oracle Database 18c
- Oracle Database 12c Release 2 (12.2.0.1)
- Oracle Database 12c Release 1 (12.1.0.2)

The support includes Oracle RAC, Oracle Automatic Storage Management (ASM), and Oracle Database In-Memory for on-premises deployments of SAP NetWeaver.

Note: Oracle Database 11g Release 2 is not supported with SAP for Exadata Cloud Service.

Regions and Availability Domains

Oracle Cloud Infrastructure is physically hosted in regions and availability domains. A region is a localized geographic area. Availability domains are one or more data centers located within a region. Most Oracle Cloud Infrastructure resources are bound either to a particular region, such as a virtual cloud network (VCN), or to an availability domain, such as a compute instance.
Availability domains are isolated from each other, fault tolerant, and unlikely to fail simultaneously. Because availability domains do not share infrastructure such as power or cooling, or the internal availability domain network, a failure at one availability domain is unlikely to impact the availability of the others.

All the availability domains in a region are connected to each other by a low-latency, high-bandwidth network. This connection makes it possible to provide high-availability connectivity to the internet and customer premises, and to build replicated systems in multiple availability domains for both high availability and disaster recovery.

Regions are independent of other regions and can be separated by vast distances. Generally, an application should be deployed in the region where it is most heavily used, because using nearby resources is faster than using distant resources.

For all SAP environments, compute nodes that are deployed as SAP Application Servers must be located in the same region, and preferably in the same availability domain, as the corresponding Exadata compute nodes.

Hybrid deployments between on-premises and cloud are not supported because of network latency.

Oracle Cloud Infrastructure Services

The following Oracle Cloud Infrastructure services are relevant to deploying Oracle databases of SAP NetWeaver Application Server ABAP/Java on the Oracle Database Exadata Cloud Service.

Identity and Access Management

Oracle Cloud Infrastructure provides Identity and Access Management (IAM) at no additional cost. IAM lets you control who has access to your cloud resources and what type of access they have. You can manage complex organizations and rules with logical groups of users and resources, and it is simple to define policies. IAM helps you set up administrators, users, and groups, and specify their permissions. It allows you to use a single model for authentication and authorization to securely control access and easily manage your IT resources across all Oracle Cloud Infrastructure.

Networking

Oracle Cloud Infrastructure Networking helps you set up virtual versions of traditional network components. You can extend your IT infrastructure with highly customizable VCNs and connectivity services that provide predictable and consistent performance, isolation, and availability.
A VCN is a customizable and private network in Oracle Cloud Infrastructure. Just like a traditional data center network, the VCN provides you with complete control over your network environment. You can assign your own private IP address space, create subnets and route tables, and configure security lists (firewall rules). A single tenant can have multiple VCNs, thereby providing grouping and isolation of related resources.

Security can be configured at several levels within a VCN. A subnet can be designated as public or private. A private subnet cannot have a public IP address. Security lists can control packet-level traffic into and out of a subnet or an instance. In addition, at the instance level, firewall rules can be implemented. Gateways and route tables provide control over traffic flow between the VCN and outside destinations. Finally, IAM policies provide control over who can access and configure which resources.

For naming, each subnet can resolve names to the internet or within a VCN. In addition, an on-premises DNS server can be added to the search scope. A description of the choices for using DNS in your VCN are described in the documentation.

Oracle Cloud Infrastructure FastConnect is an alternative to using the public internet to connect your network to Oracle Cloud Infrastructure. FastConnect provides an easy, elastic, and economical way to create a dedicated and private connection with higher bandwidth options, and it provides a more reliable and consistent networking experience compared to internet-based connections.

Oracle Cloud Infrastructure’s flat and fast network provides the latency and throughput of rack adjacency across the whole network, which allows synchronous replication and constant uptime. No network oversubscription also provides predictable bandwidth and performance. High-bandwidth network interconnect provides less than 100-µs latency between any two hosts within an availability domain, and less than 1 ms between availability domains in a region.

Object Storage
Oracle Cloud Infrastructure Object Storage helps you manage data as objects stored in containers. Object Storage offers an unlimited amount of capacity, automatically replicating and healing data across multiple fault domains for high durability and data integrity. You can enhance the scale and performance of content-rich, analytic, and backup applications to serve more customers and achieve results faster.

Exadata Cloud Service Instances
Each Exadata Cloud Service instance is based on an Exadata system configuration that contains a predefined number of compute nodes (database servers) and a predefined number of Exadata Storage Servers, all connected by a high-speed, low-latency InfiniBand network and intelligent
Exadata software. The number of compute nodes per shape cannot be modified after an Exadata Cloud Service instance is launched.

Currently, Oracle offers the following Exadata configurations on Oracle Cloud Infrastructure:

<table>
<thead>
<tr>
<th>System</th>
<th>Number of Compute Nodes</th>
<th>Number of Exadata Storage Servers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter Rack X6</td>
<td>2 nodes (22 to 84 OCPUs and 1,440 GB RAM)</td>
<td>3</td>
</tr>
<tr>
<td>Half Rack X6</td>
<td>4 nodes (44 to 168 OCPUs and 2,880 GB RAM)</td>
<td>6</td>
</tr>
<tr>
<td>Full Rack X6</td>
<td>8 nodes (88 to 336 OCPUs and 5,760 GB RAM)</td>
<td>12</td>
</tr>
<tr>
<td>Base Rack X7</td>
<td>2 nodes (2 to 48 OCPUs and 720 GB RAM)</td>
<td>3</td>
</tr>
<tr>
<td>Quarter Rack X7</td>
<td>2 nodes (2 to 92 OCPUs and 1,440 GB RAM)</td>
<td>3</td>
</tr>
<tr>
<td>Half Rack X7</td>
<td>4 nodes (4 to 184 OCPUs and 2,880 GB RAM)</td>
<td>6</td>
</tr>
<tr>
<td>Full Rack X7</td>
<td>8 nodes (8 to 368 OCPUs and 5,760 GB RAM)</td>
<td>12</td>
</tr>
</tbody>
</table>

At the time this paper was published, SAP might not have certified all the preceding systems. For up-to-date information about certification status, see [SAP Note 2614028](#).

Exadata Cloud Service features infrastructure that is dedicated to each customer, to ensure that response times and throughput are predictable for critical business processes. Exadata Cloud Service also allows elastic scaling, which enables you to grow and shrink your database server CPU capacity over your base subscription level to meet peak or seasonal demands. With this feature, you can add database server OCPUs to achieve a total processor capacity up to the physical maximum of your chosen shape. You can make adjustments online as often as needed.

Each Exadata database server is configured as a virtual machine (VM), called DomU, running on an Oracle VM hypervisor on a dedicated physical server. You have root privileges for the Exadata database server DomU and DBA privileges on the Oracle databases. You can configure the Exadata database server according to your requirements. You can also run additional agent software and SAP Infrastructure components on the Exadata database servers to conform to business standards or security monitoring requirements.

On an Exadata database server, you can create numerous database deployments for different SAP applications. Apart from the inherent storage and processing capacity of your Exadata configuration, there is no maximum for the number of database deployments that you can create.

Note: We do not support using Exadata compute nodes for SAP NetWeaver Application Server ABAP/Java instances except for SAP Central Services.
However, you do not have administrative access to the Exadata infrastructure components—including the physical compute node hardware, network switches, power distribution units (PDUs), and integrated lights-out management (ILOM) interfaces—or the Exadata Storage Servers, which are all administered by Oracle.

Exadata Cloud Service Licenses

Exadata Cloud Service is available through two flexible subscription offerings for SAP customers:

- License included
- Exadata Cloud Service Bring Your Own License (BYOL), which is also valid for SAP ASFU licenses

License Included

This subscription model includes all the features of Oracle Database Enterprise Edition, plus all Oracle Database Enterprise Manager Packs and all Database Enterprise Edition Options. These industry-leading capabilities include:

- Database In-Memory
- Real Application Clusters (RAC)
- Active Data Guard
- Automatic Storage Management (ASM)
- Partitioning
- Advanced Compression
- Advanced Security
- Database Vault
- Real Application Testing
- OLAP
- Advanced Analytics
- Spatial and Graph

Also included in an Exadata Cloud Service PaaS subscription is Oracle Multitenant, which enables high consolidation density, rapid provisioning and cloning, efficient patching and upgrades, and simplified database management.

This subscription model is ideal for customers who don’t have existing Oracle Database licenses or who want to use Oracle Database features beyond their current licenses.
Exadata Cloud Service Bring Your Own License (BYOL)

Exadata Cloud Service BYOL is designed to minimize costs when migrating to the cloud. In a BYOL model, customers can deploy their existing Oracle Enterprise Edition and Database Option licenses on Exadata Cloud Service. Standard Edition is not supported on any Exadata Cloud Service.

When a customer brings a Database Enterprise Edition license entitlement to Exadata Cloud Service, they are granted the rights to use Oracle Transparent Data Encryption (TDE), Diagnostics Pack, Tuning Pack, Data Masking and Subsetting Pack, and Real Application Testing without having on-premises license entitlements for those database options. The Exadata system software is also included in a BYOL subscription, so BYOL customers do not have to bring a license entitlement for the Exadata system software.

Within each Exadata configuration, you can create numerous database deployments for different SAP applications. Apart from the inherent storage and processing capacity of your Exadata configuration, there is no maximum for the number of database deployments that you can create.

Planning Your Exadata Cloud Service for SAP NetWeaver Application Server ABAP/Java

Use the information in this section to plan for using Exadata Cloud Service for SAP NetWeaver Application Server ABAP/Java deployment on Oracle Cloud Infrastructure.

Prerequisites

Request an Exadata Cloud Service for a region and availability domain. The service must be launched by using an Oracle Database 19c database to get Oracle Grid Infrastructure 19c installed, which supports 12.1, 12.2, 18c, and 19c databases. Launching the service on an Exadata X6 Quarter Rack takes up to four hours to deploy. Launching the service on an Exadata X6 Half Rack (four nodes) or Exadata X6 Full Rack (eight nodes) takes respectively longer to deploy. The times required to deploy an X7-based system can differ.

Deployment Restrictions with SAP for Exadata Cloud Service

The following restrictions apply:

- Only Unicode deployments of SAP NetWeaver Application Server ABAP/Java are supported.
- Oracle Database 11g Release 2 is not supported.
- SAP Application Servers on Exadata compute nodes are not supported.
• Preconfigured databases of Exadata Cloud Service cannot be used.

• All databases need to be created by using SAP Software Provisioning Manager (SWPM).

• Only Oracle 18c (and later) databases created by using SWPM with patch level 27 (and later) are encrypted by default during installation. For all other databases, encryption must be enabled as a separate step after successful SAP installation.

• The strong password policy in Exadata Cloud Service must be changed for an SAP installation.

Licenses

If you have already bought Oracle Database licenses from SAP (ASFU), you can transfer them to Oracle Cloud Infrastructure. Notify SAP that you intend to bring your own license (BYOL).

The same applies for licenses that you have bought from Oracle (Full Use, FU). If you have enough licenses, you can also transfer them from on-premises to Oracle Cloud Infrastructure. To ensure that the number of shapes, processors, and cores is correct, we recommend that you check with your Oracle sales manager or local license sales contact. They can help you set up the correct licensing.

Also, you can benefit from Oracle's Bring Your Own License (BYOL) to PaaS program for Exadata Cloud Service, with both ASFU and FU licenses.

For more information about Oracle's BYOL to PaaS program, see the following resources:

Support

If you need technical support or help with Exadata Cloud Service, you can go to My Oracle Support and file a service request. If you encounter any problem with the SAP NetWeaver Application Server ABAP/Java deployment with Exadata Cloud Service, log a support message with SAP support and assign it to the support queue BC-OP-LNX-OLNX.

Customers must purchase the Exadata Cloud Service directly from Oracle to use the service and get support for it. For details, see [Oracle Cloud Hosting and Delivery Policies](#).
In addition to support for technical issues, use My Oracle Support if you need to perform the following tasks:

- Reset the password or unlock the account for the tenancy administrator.
- Add or change a tenancy administrator.
- Request a service limit increase.

Note: SAP Note 2520061 describes the support subscriptions that are needed to run SAP NetWeaver Application Server ABAP/Java on Oracle Cloud Infrastructure with Oracle Linux.

Documentation

Determine the supported combination of Oracle Linux and Oracle Database for your planned SAP product by using the SAP Product Availability Matrix (PAM). Ensure that you are familiar with the relevant SAP NetWeaver master and installation guides and the referenced SAP notes within. To find planning, installation, patching, and operation documentation for your task, see the SAP NetWeaver Guide Finder.

Become familiar with the product documentation for all the components of your stack: Oracle Cloud Infrastructure, Oracle Linux, Oracle Database, and SAP NetWeaver Application Server ABAP/Java.

Note: SAP Note 2614028 defines all the technical prerequisites for deploying an SAP NetWeaver Application Server ABAP/Java system with Exadata Cloud Service. This note is updated regularly, so read it before you start any deployment. Information in the note takes precedence over information in this paper.

Workload Size

Estimate the size needed for your SAP installation by using the SAP Quick Sizer tool, and calculate the Oracle Database Exadata Cloud Service configuration needed for your SAP workload. For SAPS numbers, see SAP Note 2614028. Note, however, that the SAPS numbers listed in the note are only for a performance indication and have not been achieved by using a high-performance benchmark.

The following table shows the current certified instance types by SAP. Check SAP Note 2614028 for the most current certification status.
<table>
<thead>
<tr>
<th>Instance Type</th>
<th>OCPU</th>
<th>Memory</th>
<th>Total Usable Storage Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exadata.Base.48</td>
<td>8–48</td>
<td>720 GB</td>
<td>74.6 TB</td>
</tr>
<tr>
<td>Exadata.Quarter1.84</td>
<td>22–84</td>
<td>1440 GB</td>
<td>84 TB</td>
</tr>
<tr>
<td>Exadata.Quarter2.92</td>
<td>8–92</td>
<td>1440 GB</td>
<td>106 TB</td>
</tr>
<tr>
<td>Exadata.Half2.184</td>
<td>16–184</td>
<td>2880 GB</td>
<td>212 TB</td>
</tr>
</tbody>
</table>

To run an SAP NetWeaver workload, minimum numbers of OCPUs are needed.

Presales and consulting teams from Oracle can help you make a valid sizing for your planned SAP landscape in the cloud.

Planning the SAP Deployment

Use the information in this section to plan your SAP NetWeaver Application Server ABAP/Java deployment on Oracle Cloud Infrastructure.

This document designs a minimal SAP landscape that consists of an SAP database using Oracle Exadata Cloud Service connected to a single SAP Application Server (Primary Application Server, here referred to as PAS) on a separate Oracle Cloud Infrastructure host. A real-world SAP landscape consists of more than one SAP Application Server, deployed on one or more Oracle Cloud Infrastructure hosts of a certified Oracle Cloud Infrastructure shape.

What You Need

- Login credentials to the Oracle Cloud Infrastructure Console

The Console is used to manage Oracle Cloud Infrastructure resources. Your account must be enabled to create resources.

- SSH key pairs

 You need SSH key pairs to deploy and access Oracle Cloud Infrastructure resources, the Exadata Cloud Service, and at least one certified Oracle Cloud Infrastructure host. See [Creating a Key Pair](#). Password protection of key pairs is required.

- Oracle SAP Bundle Patches for Exadata

 For information, see the “SAP Bundle Patch for Oracle Database Exadata Cloud Service: Life Cycle Management for SAP Databases” section later in this paper.
• SAP NetWeaver installation media

Required media and versions of SAP Software Provisioning Manager (SWPM), SAP Kernel, and Installation Exports, depending on your installation scenario. You might need access to SAP Marketplace to download SAP software. However, this document assumes that you have already selected and downloaded all the required software components and have them available, for example, on an NFS file system.

• Passwords for various resources

Passwords are used to protect VNC server access, OS user accounts (for X-Windows), Exadata Cloud Service database accounts, and SSH private keys.

General Installation Overview

This section provides an overview of the installation and configuration steps outlined in this paper. Detailed steps follow in the later sections.

The first step is deploying resources in the Oracle Cloud Infrastructure Console. In this use case, you use the Console to create a network that suits your needs, provision the Exadata Cloud Service plus SAP Application Server hosts, and, if necessary, create Object Storage containers. When this step is completed, you have the following items:

• At least one VCN that meets the requirements for deploying the Exadata Cloud Service, plus route tables and security lists
• IP addresses (either one public and one private or two private IP addresses for the client and backup network), plus virtual IP addresses of all Exadata nodes
• Host names, SCAN names, and SCAN IP addresses
• Private and public IP addresses of all compute nodes, for example, for the SAP Application Servers
• SSH-based access to all the deployed Compute resources

Before any of the nodes can be used for SAP software, you must perform numerous configuration steps to be able to install SAP software.

• On the Exadata Cloud Service compute nodes, you must make changes to local and shared file systems. The tasks to be done vary among the user accounts root, oracle, and opc.
• On the Oracle Cloud Infrastructure compute nodes, you must make changes to hostname settings, time zones, local file systems, and network file systems, plus a few more, before SWPM can be executed to install SAP software.
SWPM must be run on each compute node, so shared access to SAP media simplifies installation.

These preparations are required to be able to run SWPM successfully.

The next major steps are as follows:

1. Install the SAP ABAP SAP Central Services (ASCS) instance, Oracle RAC Database, and the SAP ERS instance on the Exadata compute nodes.
 - Prepare the hosts for running SWPM.
 - Run SWPM on the Exadata compute nodes.
 - Install the SAP ASCS instance on a shared location on the Exadata compute nodes and complete post-configuration steps.
 - Create an Oracle RAC database on the Exadata compute nodes using SWPM.
 - Install SAP ERS on each Exadata compute node.
 - Verify that the database is Oracle RAC.

2. Install the Primary Application Server (PAS) instance on an SAP Application Server compute node.
 - Prepare the host for running SWPM.
 - Run SWPM to install PAS.

3. Configure the SAP GUI to verify that the SAP system is accessible.

4. Run post-installation steps.
 - Set up Object Storage.
 - Verify readiness by using Object Storage.
 - Set up BR*Tools.
 - Integrate with SAPCTL.
 - Configure HA-NFS for /sapmnt.
Implementing the Deployment

This section provides the steps for implementing your planned deployment of SAP NetWeaver Application Server ABAP/Java in Oracle Cloud Infrastructure.

Get Your Oracle Cloud Infrastructure Account

To get your Oracle Cloud Infrastructure account, work with your Oracle account team. They can help you find the best option for structuring your subscription. Options include metered, nonmetered, and trial subscriptions. A convenient way to start immediately is to sign up for a free trial.

Deploy the Oracle Cloud Infrastructure Resources

Deploy the following resources on Oracle Cloud Infrastructure:

- VCN
- Exadata Cloud Service
- Oracle Cloud Infrastructure Compute Instance

Deploy the VCN

1. Log in to the Oracle Cloud Infrastructure Console.
2. Select the region in which you want to deploy your SAP application and provision the related resources.
3. Open the navigation menu, go to Networking, and then select Virtual Cloud Networks. Choose a compartment in which to define the VCN.
4. Set up a VCN with required subnets and security lists in a particular availability domain.

 In the VCN creation dialog box, we recommend choosing the option to create related resources like subnets and an internet gateway in a single step. Then, you would terminate the subnets for the availability domains where your Exadata Cloud Service is not provisioned and create the client and backup subnets in the same availability domain where your Exadata Cloud Service is provisioned. Your subsequent resources (for example, databases and compute instances) need to be deployed in that particular availability domain and client subnet. For more information, see Overview of Networking in the Oracle Cloud Infrastructure documentation.
Deploy the Exadata Cloud Service

1. In the Oracle Cloud Infrastructure Console, open the navigation menu and select **Bare Metal, VM, and Exadata**.

2. Verify the selected compartment, and then click **Launch DB System**.

3. In the **DB System Information** section of the **Launch DB System** dialog box, provide the following information:
 - Choose an availability domain that you are provisioned to.
 - For the shape type, select **Exadata**.
 - Select the shape that you want to deploy from the list of SAP certified shapes.
 - Choose the CPU count.
 - Paste your public SSH key or upload your public key file.
 - Choose a data storage percentage based on whether you want to keep local backups.

4. In the **Network Information** section, select your new VCN along with the client and backup subnet names. Enter a short hostname prefix.

5. Provide the appropriate values in the **Database Information** section. To deploy the latest Oracle Grid Infrastructure software, the database version needs to be the latest (at least 19.0.0.0.0) deployed. The database is deleted after the DB system is launched and cannot be used for SAP.

6. Click **Launch DB System** and wait for completion.

7. When the new DB system is provisioned, select the default database and delete it.

8. Clone the required Oracle Database Homes by using dbaascli tool. For example:

   ```
   [root@node0 ~]# dbaascli dbhome create --version 18000
   DBAAS CLI version 18.2.3.2.0
   Executing command dbhome create --version 18000
   INFO: OSS details are not provided, restoring from local acfs image, Please confirm yes/no: yes
   INFO: Logfile for this activity => /var/opt/oracle/log/ohome_createlocal
   INFO : Creating Oracle Home from Local Image
   INFO: Restoring Oracle from Image
   /var/opt/oracle/dbaas_acfs/dbnids/db18000_bits_EXA.zip for version 18000
   INFO: Executing clone.pl
   Using Oracle Home : /u02/app/oracle/product/18.0.0.0/dbhome_2
   clone successful for vm : node0: The cloning of OraHome1 was successful.
   ```
INFO: Running root.sh on node node0
INFO: Running root.sh on node node1 --------
INFO: Restore is successful, new home =>
/u02/app/oracle/product/18.0.0.0/dbhome_2

Deploy the Oracle Cloud Infrastructure Compute Instance

Deploy an Oracle Cloud Infrastructure Compute instance of a supported shape that will host the SAP Primary Application Server (PAS) in the same VCN as the Exadata compute nodes.

In the Oracle Cloud Infrastructure Console, navigate to the Compute tab. Supported shape types are referenced in SAP Note 2474949. This white paper uses Oracle Linux 7.6 images.

After all deployments succeed, you can use SSH to log in to all three compute nodes (for an Exadata Quarter Rack deployment). You can log in with the opc user and gain root access by using sudo su -. Also, with the same key as for the opc user, you can reach the Oracle account on the Exadata Cloud Service compute nodes.

To summarize:

- \texttt{ssh opc@node0} takes you to the opc user on Exadata compute node0.
- \texttt{ssh oracle@node0} (with the same key as for the opc user) takes you into the Oracle user account.

As a consequence, managing SSH keys properly is an important measure.

You have various choices of where to put the compute instances. Following are some possible scenarios:

- Separation of public subnet, management private subnet, and apps and database private subnet
- Same as the preceding separation, but also with a different private subnet for apps and databases
- Separation of different SAP landscapes in different VCNs
- Separation into test, quality, and production VCNs
- Migration of your existing on-premises network to the cloud

A local firewall for each compute instance that comes from the operating system, and security lists that are part of the Oracle Cloud Infrastructure Networking service, allow and deny specific network traffic. For an SAP deployment, the local firewall must be disabled (which you will do later in this paper), and only the security lists for the subnets must be managed. You can get an overview about the required ports for an SAP system from SAP Help Ports.
Prepare Your Environment

You can set up all the resources by using the Oracle Cloud Infrastructure Console or by using automation. Automation provides the advantage of repeatability, while the Oracle Cloud Infrastructure Console provides immediate provisioning and a human-friendly user interface.

1. Set Up the Bastion Host
2. Set Up the ULN Proxy
3. Set Up the VNC Server
4. Set Up the SAP Download Manager
5. Download Your SAP Software

Set Up the Bastion Host

Oracle recommends that you use Oracle Linux 7 on the bastion host. A bastion host can have the following roles:

- Provide a VNC server for graphical access and SSH server from outside. VNC or X-Windows is not required for newer versions of SAP SWPM or SAP SUM because they can be accessed from a web browser.
- Provide graphical workspace for any related operations (for example, download, install, and access).
- Work as a ULN Proxy.

Note: To store your SAP installation media, SAP patches, and Oracle SAP bundle patches (SBPs), create an NFS file system in the Oracle Cloud Infrastructure Console in the respective availability domain. Then, mount this file system on your compute nodes. For more information, see Overview of File Storage.

Set Up the ULN Proxy

To ensure that you have the latest operating system updates for Oracle Linux 7 available from Oracle, register the system with the Oracle Unbreakable Linux Network (ULN) and set up a ULN proxy. A proxy enables you to update compute instances with the latest packages even if the compute instance is not connected to the internet. A requirement for maintaining the proxy is to ensure that sufficient disk space is available to hold all the updates.

Register your Oracle Linux 7 system to ULN, and follow the ULN User’s Guide to configure a ULN proxy to mirror the needed local channels. Provide a block volume after you approximate the size of your needed channels.
Set Up the VNC Server

GUI access at the operating-system level is needed to run any graphical tools. The native GUI can be accessed by enabling a VNC server on the bastion host. Ensure that security lists are maintained to allow access to only approved sources.

Configure a VNC server on the bastion host and follow the description in the Oracle Linux Administrator's Guide for Release 7. Implement local firewall rules or entries into the security lists to allow access to the virtual cloud network (VCN) from your network outside.

Set Up the SAP Download Manager

SAP Download Manager helps you download software from the SAP Software Download Center that you have put in the download basket. Install the SAP Download Manager on the bastion host and set the needed S-User and password credentials to download SAP software from the SAP Software Download Center (SWDC).

Download Your SAP Software

From the SWDC, download the required installation software for your specific SAP product. With your S-User permissions, you can download the installation media directly or you can use the SAP Download Manager. We recommend storing the software on a shared file system.

We also recommend using the SAP Maintenance Planner to compose the required installation and upgrade media and push them to the download basket. You can generate a stack.xml file to use with SWPM to provide a consistent set of installation media that matches the contents of your download basket. You can then add more Oracle RDBMS and Oracle Client media from the SAP marketplace before downloading all the media.

Prepare Exadata Compute Nodes

This section provides the necessary steps for preparing the Exadata compute nodes.

1. Provision SAP Monitoring
2. Relax the Password Policies
3. Raise Values in the limits.conf File
4. Create a Decently Sized Oracle ACFS
5. Transfer Your SAP Installation Media
6. Increase the Swap Size
7. Add Users and Groups
8. Enter Virtual Host Names and Their Configuration in /etc/hosts

Provision SAP Monitoring

For every cloud solution, SAP requires the collection of configuration and performance data of the cloud platform being used.

With Exadata Cloud Service, the SAP Host Agent needs to run on all the Exadata compute nodes. Installation of the SAP Host Agent either using SAP Software Provisioning Manager (SWPM) or manually is described in the SAP Host Agent Installation SAP documentation topic.

The required version and patch level of the SAP Host Agent are described in SAP Note 2614080.

For SAP monitoring, the SAP Host Agent consumes Exadata Cloud Service specific configuration and performance metrics collected by a Linux service called oraecscol. The oraecscol service must be installed and started on each Exadata compute node. It is shipped as a Linux RPM called oraecscol.rpm.

Part of the oraecscol.rpm package is a Python script called oraecswatcher. This script ensures that updates of the package are applied automatically and that the oraecscol service is being started if it is not running. Schedule oraecswatcher as a cron job to run periodically.

Install and Configure the oraecscol Package

The required version of oraecscol.rpm is already available on the Exadata compute nodes after initial deployment. To install and configure it, perform the following steps:

1. As the root user, copy oraecscol.rpm from /u02/opt/dbaas_images/oraecscol.rpm to /tmp and make /tmp your current working directory:

   ```
   [root@nodeN] # cp /u02/opt/dbaas_images/oraecscol.rpm /tmp ; cd /tmp
   ```

2. Install oraecscol.rpm:

   ```
   rpm -i oraecscol.rpm
   ```

3. Enable the service:

   ```
   systemctl enable oraecscol.service
   ```

4. Start the service:

   ```
   systemctl start oraecscol.service
   ```
5. As the root user, add the following cron job into the root user’s crontab:

A. Edit crontab:

```
[root@nodeN] # crontab -e
```

B. Add:

```
*/15 * * * * sudo /usr/bin/python /opt/oracle.oraecscol/oraecswatcher
```

C. Save crontab:

```
:wq
```

6. Wait two minutes, and then check whether metrics collection works as expected. As the root user, run the following command:

```
[root@nodeN] # curl http://127.0.0.1:18181
```

This should return the XML document for consumption by the SAP Host Agent. For example:

```xml
<!-- Provider Health Description #113 -->
<metric category="config" context="vm" last-refresh="1519899668" refresh-interval="60" type="string" unit="none">
  <name>
    Provider Health Description
  </name>
  <value>
    OK
  </value>
</metric>
```

Logs for oraecscol are written to `/opt/oracle.oraecscol`.

After finishing the installation and applying all recommended updates, support packages (SUM), and SAP notes (SAP and the SAP Host Agents are up and running), follow the instructions in SAP Note 1409604. This note describes how to use SAP transaction RZ21 to register the Exadata compute nodes for SAP central monitoring.

Relax the Password Policies

An SAP NetWeaver installation does not work with the Exadata Cloud Service strong password policy, so you must modify the policy.
Run the following command as root on each cluster node:

```
[root@nodeN] # /opt/oracle.cellos/host_access_control pam-auth --deny 10 --lock 60 --pwquality 6 --remember 0
```

With this approach, you still cannot run `su - <someuser>` from the `opc` account because of PAM policy, and you must still switch to root via `sudo su -` first.

Raise Values in the limits.conf File

On each compute node, perform the following steps as the root user:

1. Open `/etc/security/limits.conf` for editing.
2. Add the following lines under the `oracle` entries:

   ```
   root  soft  memlock  unlimited
   root  hard  memlock  unlimited
   ```

3. If you will perform offline backups using SAP BR*Tools, add the following entries for each SAPSID that you are going to install. These entries are required because SAP BR*Tools will startup mount a database instance under one of these OS users to perform the offline backup:

   ```
   ora<sid>  soft  memlock  unlimited
   ora<sid>  hard  memlock  unlimited
   <sid>adm  soft  memlock  unlimited
   <sid>adm  hard  memlock  unlimited
   ```

4. Save and exit the file.
Create a Decently Sized Oracle ACFS

1. Follow the documentation to create an Oracle ACFS on one node only. For example:

```
[opc@node0] sudo su -
[root@node0] su - grid
[grid@node0] asmcmd
ASMCMD> volcreate -G DATAC1 -s 1024G sapshare_v1
ASMCMD> volinfo -G DATAC1 sapshare_v1
Diskgroup Name: DATAC1
Volume Name: SAPSHARE_V1
Volume Device: /dev/asm/sapshare_v1-128
State: ENABLED
Size (MB): 1048576
Resize Unit (MB): 512
Redundancy: HIGH
Stripe Columns: 8
Stripe Width (K): 1024
Usage:
Mountpath:
```
```
[grid@node0]$ /sbin/mkfs -t acfs /dev/asm/sapshare_v1-128
mkfs.acfs: version           = 12.2.0.1.0
mkfs.acfs: on-disk version   = 46.0
mkfs.acfs: volume size       = /dev/asm/sapshare_v1-128
mkfs.acfs: Format complete.
[grid@node0]$ exit
[root@node0]$ /sbin/acfsutil registry -a /dev/asm/sapshare_v1-128
/sapshare
```

The preceding commands create a 1-TB cluster file system out of the +DATAC1 disk group and mount it to /sapshare. This change is persistent.

2. On a single compute node, run the following commands as root:

```
[root@node0] # mkdir /sapshare/trans
[root@node0] # mkdir /sapshare/sapmnt
[root@node0] # mkdir /sapshare/sapbins
```

3. On each compute node, run the following commands as root (which avoids the `/usr/sap` directory being in the boot partition):

```
[root@nodeN] # mkdir /u02/sap ; ln -s /u02/sap /usr/sap
[root@nodeN] # ln -s /sapshare/sapmnt /sapmnt
[root@nodeN] # ln -s /sapshare/trans /usr/sap/trans
[root@nodeN] # chmod 777 /sapshare/sapbins
```

Transfer Your SAP Installation Media

Transfer your SAP installation media. The media must include SAP NetWeaver, SWPM, DBA Tools, the most up-to-date SAP Host Agent, Oracle Client software, and SAPCAR to extract the SAR archives. Refer to SAP PAM for suitable installation media. Unpack the archives.
If you put the media on a shared location such as /sapshare/sapbins, you have to transfer only once. If you have composed the media required for installation by using the SAP Maintenance Planner and plan to use the stack.xml option (SAPINST_SAPINST_STACK_XML=<stack.xml>), you should already have all the necessary components for installation.

Increase the Swap Size

Current deployments have 16 GB of swap space by default. If you need more swap space, you can get some space from /u02.

Add Users and Groups

SWPM expects the oper group, which is not present. On each compute node, run the following commands as the root user:

```
[root@nodeN] # groupadd --gid 504 oper
[root@nodeN] # usermod oracle -a -G oper
[root@nodeN] # usermod oracle -a -G asmadmin
```

Enter Virtual Host Names and Their Configuration in /etc/hosts

One advantage of clustered environments is the high availability of resources. Oracle Cluster Ready Services (CRS) expands this to further services that support SAP environments to survive individual outages. SAP environments use services for the high availability resources for the SAP ASCS instance, the SAP ERS instance, and the highly available NFS export.

1. For these three resources (the SAP ASCS instance, the SAP ERS instance, and the highly available NFS export) on each SAP system, identify free private IP addresses in the Exadata client subnet.

2. Edit the /etc/hosts file as root and add the following lines. Substitute your SAPSID for mfg.

   ```
   10.0.1.241 ascsmfg
   10.0.1.242 ersmfg
   10.0.1.243 hanfs
   ```

3. Save and exit the file, and repeat the preceding step on all compute nodes.

 Next, register these IP addresses with the VCN.

4. Follow the instructions in Required Keys and OCIDs to create an API key, and put the private key into the proper location, for example, /home/opc/.oci. Ensure that the private key file has only read-write permissions for the owner (chmod 600).
5. As root, download the `addviptovcn.sh` script from one of the following locations to a temporary directory, and change file permissions to write-execute for the owner (chmod 300).

https://swiftobjectstorage.us-phoenix-1.oraclecloud.com/v1/exadata/patches/dbaas_patch/sap/tools/addviptovcn.sh

https://swiftobjectstorage.uk-london-1.oraclecloud.com/v1/exadata/patches/dbaas_patch/sap/tools/addviptovcn.sh

For example:

```
cd /tmp
chmod 300 addviptovcn.sh
```

As root, edit `addviptovcn.sh` and update the following lines with your individual values. The tenancy OCID is on the tenancy details page in the Oracle Cloud Infrastructure Console. For example:

```
authUserId="ocid1.user.oc1..exampleuniqueID";
tenancyId="ocid1.tenancy.oc1..exampleuniqueID";
privateKeyPath="/home/opc/.oci/oci_api_key.pem";
```

6. Save and exit the file.

7. As root, run the following command:

```
[root@nodeN ] # /tmp/addviptovcn.sh
```

8. Add all the preceding IP addresses. You need to do this on one host only.

```
Trying to identify API Servers
Identified Region API Host: iaas.us-phoenix-1.oraclecloud.com

Following Metadata about VNICs is available:
[
  {
    "vnicId" : "ocid1.vnic.oc1.phx.exampleuniqueID",
    "privateIp" : "10.0.1.73",
    "vlanTag" : 0,
    "macAddr" : "00:10:7a:fb:db:a0",
    "virtualRouterIp" : "10.0.1.1",
    "subnetCidrBlock" : "10.0.1.0/24",
    "nicIndex" : 0
  }
]
```
Please specify the VNIC OCID to add or delete a VIP

VNIC: ocid1.vnic.oc1.phx.exampleuniqueID >

The following output is expected:

Following IPs exist on the VNIC:
VNIC: ocid1.vnic.oc1.exampleuniqueID
 "ipAddress" : "10.0.1.84",
 "ipAddress" : "10.0.1.73",
 "ipAddress" : "10.0.1.77",

1) Create
2) Delete
3) List
4) Full
5) Quit
Create / Delete / List VIP?

Creation of virtual IP addresses prompts for the virtual IP hostname and its IP address. Use numbers 1 through 5 to navigate within the addviptovcn.sh menu.

Install SAP NetWeaver Application Server ABAP/Java

This section describes the steps for installing SAP NetWeaver Application Server ABAP/Java, which includes host preparation steps, installing SAP NetWeaver instances such as ASCS, and installing the database instance by using the latest available version of the SAP Software Provisioning Manager (SWPM).

1. Change the Root Password on Each Exadata Compute Node
2. Running SAP SWPM on Compute Nodes
3. Prepare all Exadata Compute Nodes Using SWPM
4. Install the ASCS Instance
5. Move /usr/sap/<SID> to the Shared File System
6. Install the Enqueue Replication Server
7. Verify the /oracle/<SAPSID> Directory and Create Soft Links for ORACLE_HOMEs
8. Patch Oracle RDBMS Homes Before Installing the Database
9. Relink ORACLE_HOME
10. Install the Database Instance
11. Configure Object Storage
12. Finish the Database Installation

Change the Root Password on Each Exadata Compute Node

As root, change the password for yourself on each compute node. SWPM asks for authentication.

```
[root@nodeN ] # passwd root
```

Running SAP SWPM on Compute Nodes

During the following steps, you run SWPM several times to perform configurations. Current versions of SWPM run in browser mode. To access the SWPM user interface with your browser, you must enable the respective port reported by SWPM in the VCN's security list via the Oracle Cloud Infrastructure Console, such as:

- source=0.0.0.0/0 (restrict if you can for outside access)
- source ports=any
- IP protocol=TCP
- destination port=4237 (the port from the sapinst URL)

Following is an example of SWPM's console output:

```
********************************************************************************
Open your browser and paste the following URL address to access the GUI
Logon users: [root]
********************************************************************************
```

When opening the URL in your browser, replace the hostname with the IP address of the host.

When prompted, confirm the security exception and enter the credentials for root in the login dialog box.

Prepare all Exadata Compute Nodes Using SWPM

Perform this step sequentially, node-by-node.

1. Ensure that SWPM temporary files are placed in a directory with enough space:

   ```
   [root@nodeN] # mkdir -p /usr/sap/tmp ; export TMP=/usr/sap/tmp
   ```

2. Run SWPM host preparation. For example, if you wanted to run preparations for Kernel 7.50, you would navigate to Generic Options > Oracle > Database Tools > RAC/ASM /Exadata Database Instance Preparation ABAP - Kernel 7.50.
Note the following guidelines:

- Do not provide a stack.xml file for host preparations.
- At any SWPM instance, never use the FQDN option.
- All hostnames must be short.
- At the local listener configuration, keep the default values.
- No Oracle 18.1 client is available, so use Oracle Client 12.2.
- For the grid installation, choose '/u01/app/19.0.0.0/grid', and for the ASM instance, choose their respective ASM instance name, such as +ASM1, +ASM2, and so on.
- You can obtain the name of the SCAN listener from Oracle Cloud Infrastructure Console (use the short name).
- Verify and, if needed, adjust the hostnames of the cluster member.
- Set up a VCN security list to allow access to SWPM and, later on, SUM from your client where you run your web browser.

After completing instance preparation on all the compute nodes, on the first node, as the user root, remove all files and directories under the '/usr/sap/MFG/SYS/exe/uc/linuxx86_64' directory and keep the empty directory.

```
[root@node0] # rm -rf /usr/sap/MFG/SYS/exe/uc/linuxx86_64/*
```

Install the ASCS Instance

Run the installation of the ASCS instance on the first compute node. The ASCS instance installation is on a shared resource for later SAPCTL preparation. Previously, in “Enter Virtual Host Names and Their Configuration in /etc/hosts,” you registered the ASCS virtual IP address (10.0.1.241). Now you need to start it.

1. Log in as root into the first node and run the following commands:

   ```
   [root@node0] # . oraenv [+ASM1]
   [root@node0] # appvipcfg create -network=1 -ip=10.0.1.241 -vipname=tmp -user=root
   [root@node0] # crsctl start res tmp ; crsctl stat res -t
   ```

2. Check the host location of the resource tmp. If it’s not on the first node, relocate it appropriately:

   ```
   [root@node0] # crsctl stat res -t
   [root@node0] # crsctl relocate res tmp -n <current_node_name>
   ```

Before you can create a database instance, SAP requires you to have an Application Server ABAP Central Services instance. For later HA awareness of the ASCS instance,
3. Ensure that SWPM temporary files are placed in a directory with enough space:

```
[root@node0] # mkdir -p /usr/sap/tmp ; export TMP=/usr/sap/tmp
```

4. Invoke SWPM on first the compute node using the virtual hostname for ASCS by running `./sapinst SAPINST_USE_HOSTNAME=ascsmfg` and install the ASCS instance. Choose instance ID 00. You can provide your stack.xml file if you want to use it during installation.

Note the following guidelines:

- At any SWPM instance, never use the FQDN option.
- All hostnames must be short.
- Verify and, if needed, adjust the hostnames of the cluster member.

Move /usr/sap/<SID> to the Shared File System

In this step, you move the local /usr/sap/<SID> of the first compute node to ACFS shared file system that you created earlier. Then you create local symbolic links to this shared location on all the compute nodes.

1. On the first node only, run the following commands:

   ```
   [root@node0] # cd /usr/sap ; tar -cvf MFG.tar MFG
   [root@node0] # cp MFG.tar /sapshare ; cd /sapshare ; tar -xvf MFG.tar
   ```

2. On all compute nodes, run the following commands:

   ```
   [root@nodeN] # cd /usr/sap ; rm -f MFG.tar ; mv MFG was.MFGlocal
   [root@nodeN] # ln -s /sapshare/MFG MFG ; chown mfgadm:sapsys MFG
   ```

Install the Enqueue Replication Server

Still in the context of SAP Note 1877857, install the Enqueue Replication Server (ERS) on all compute nodes locally (run `sapinst` without arguments or using only the option for a stack.xml file). On all nodes, choose the same instance number for ERS, for example, 01.

On the first node where the ASCS instance is running, perform the following steps:

1. Install the ERS instance.
2. After ERS installation is completed on the first node, run the following commands as SIDADM:

```
node0: mfgadm> sapcontrol -nr 00 -function Stop
node0: mfgadm> sapcontrol -nr 00 -function StopService
```

3. As root, stop `saphostctrl` and edit the `sapinit` script.

```
[root@node0]# /etc/init.d/sapinit stop
```

Create and run the following shell script:

```
#!/bin/sh
# /opt/exacloud/sap/mod_sapinit
# for shared SAP ASCS instances only.
# run as root. Create /etc/init.d/sapinit.bak
# p is to print the match, = to print the line number
a=$(sed -n '/start()/,+15 { /for/ = }' /etc/init.d/sapinit )
b=$(sed -n '/start()/,+25 { /done/ = }' /etc/init.d/sapinit )
sed -i.bak "$a,$b s/^/#/" /etc/init.d/sapinit
```

On all subsequent nodes, perform the following steps for each node:

1. Relocate the temporary ASCS resource to the current node:

```
[root@nodeN]# . oraenv
+ASM2 (and +ASM3 and so forth)
[root@nodeN]# crsctl relocate res tmp -n <currentnodename>
```

2. Register the ASCS instance with `saphostctrl` locally:

```
[root@nodeN]# /usr/sap/hostctrl/exe/saphostctrl -function
RegisterInstanceService -sid MFG -nr 00 -saplocalhost ascsmfg
```

3. As root, stop `saphostctrl` and edit the `sapinit` script:

```
[root@nodeN]# /etc/init.d/sapinit stop
```

Create and run the following shell script:

```
#!/bin/sh
# /opt/exacloud/sap/mod_sapinit
# for shared SAP ASCS instances only.
# run as root. Create /etc/init.d/sapinit.bak
# p is to print the match, = to print the line number
a=$(sed -n '/start()/,+15 { /for/ = }' /etc/init.d/sapinit )
b=$(sed -n '/start()/,+25 { /done/ = }' /etc/init.d/sapinit )
sed -i.bak "$a,$b s/^/#/" /etc/init.d/sapinit
```

4. Start `saphostctrl` and the ASCS instance:

```
[root@nodeN]# /etc/init.d/sapinit start
[root@nodeN]# su - mfgadm
nodeN: mfgadm> sapcontrol -nr 00 -function StartService MFG
nodeN: mfgadm> sapcontrol -nr 00 -function Start
```
5. Install the ERS instance.

6. Stop the ASCS instance:

   ```
   [root@nodeN]# su - mfgadm
   nodeN: mfgadm> sapcontrol -nr 00 -function Stop
   nodeN: mfgadm> sapcontrol -nr 00 -function StopService
   ```

After completing installation of ERS on all nodes, perform the following steps:

1. Relocate the temporary ASCS resource back to the first compute node:

   ```
   [root@node0]# . oraenv
   +ASM1
   [root@node0]# crsctl relocate res tmp -n <currentnodename>
   ```

2. As root, restart `sapinit`:

   ```
   # /etc/init.d/sapinit start
   ```

3. Start the ASCS services manually for the subsequent SAP Database Instance installation:

   ```
   node0: mfgadm> sapcontrol -nr 00 -function StartService MFG
   node0: mfgadm> sapcontrol -nr 00 -function Start
   node0: mfgadm> sapcontrol -nr 00 -function GetProcessList
   ```

At this point, you are finished with the contents of SAP Note 1877857. You will finish HA integration later.

Verify the `/oracle/<SAPSID>` Directory and Create Soft Links for `ORACLE_HOME`

SAP distinguishes between an *installation* `ORACLE_HOME` (called IHRDBMS in this context) and a *runtime* `ORACLE_HOME` (called OHRDBMS in this context). The OHRDBMS is usually defined as a soft link named `<VERSION>` (for example, 18) under `/oracle/<SAPSID>/` that points to the IHRDBMS where the Oracle Database software has been installed.

On an engineered system, you do not install Oracle RDBMS software; instead, you use the existing and preinstalled RDBMS software by creating a soft link to the IHRDBMS intended for use by SAP. The `ORACLE_HOME` environment variable is usually set to OHRDBMS. Wherever SWPM asks for the location of `ORACLE_HOME` for the Oracle Database, use the *runtime* `ORACLE_HOME` (OHRDBMS).

For example:

- OHRDBMS is at `/oracle/MFG/18` (where 18 is a symbolic link to IHRDBMS).
- IHRDBMS is at `/u02/app/oracle/product/18.0.0.0/dbhome_2`.
- The `ORACLE_HOME` environment variable is set to `/oracle/MFG/18`.
Perform the following steps:

1. On each compute node, verify whether one of the following paths exists:
 - `/oracle/<SAPSID>/121`
 - `/oracle/<SAPSID>/122`
 - `/oracle/<SAPSID>/18`
 This might come from the host preparation and needs to be fixed.

2. As root on each compute node, run the following commands:
   ```bash
   [root@nodeN] # mv /oracle/<SAPSID>/121 /oracle/<SAPSID>/was.121
   [root@nodeN] # mv /oracle/<SAPSID>/122 /oracle/<SAPSID>/was.122
   [root@nodeN] # mv /oracle/<SAPSID>/18 /oracle/<SAPSID>/was.18
   ```

3. Check your `/etc/oratab` file and ensure that it has an entry for the IHRDBMS that you want to use for the SAP database instance. For example:
   ```
   MFG:/oracle/MFG/18:N
   ```

4. As the `oracle` user on each compute node, create a soft link for the respective ORACLE_HOME.
 - For an 18 ORACLE_HOME:
     ```bash
     [oracle@nodeN] $ ln -s /u02/app/oracle/product/18.0.0.0/dbhome_2
                    /oracle/<SAPSID>/18
     ```
 - For a 12.2 ORACLE_HOME:
     ```bash
     [oracle@nodeN] $ ln -s /u02/app/oracle/product/12.2.0/dbhome_2
                    /oracle/<SAPSID>/122
     ```
 - For a 12.1 ORACLE_HOME:
     ```bash
     [oracle@nodeN] $ ln -s /u02/app/oracle/product/12.1.0/dbhome_2
                    /oracle/<SAPSID>/121
     ```

Patch Oracle RDBMS Homes Before Installing the Database

Before you can install the SAP database instance, you must patch the Oracle RDBMS software. For instructions, see "Installation of Patches for Oracle RDBMS Software." This applies to all compute nodes.

You also need to perform the post-installation steps in “Run the RDBMS Post-Installation Steps from Patching.” This applies to all compute nodes.
Relink ORACLE_HOME

Note: This step applies only for Oracle Database 12.1 or Oracle Database 12.2, or if you are installing with SWPM with a patch level earlier than 27.

On all compute nodes, as the `oracle` user with the proper ORACLE_HOME set (/oracle/<SAPSID>/121 for a 12.1 home, /oracle/<SAPSID>/122 for a 12.2 home, or /oracle/<SAPSID>/18 for an 18.x home), run the following command:

```
[oracle@nodeN] $ cd $ORACLE_HOME/rdbms/lib ; make -f ins_rdbms.mk cloud_off
```

If you do not perform this step, you cannot create a database for SAP.

Install the Database Instance

Obtain the SCAN listener name (short hostname) and node virtual IP addresses via the Oracle Cloud Infrastructure Console or by executing the following commands:

```
[root@leo-ilmsv1 ~]# . oraenv
ORACLE_SID = [+ASM1] ? +ASM1
The Oracle base remains unchanged with value /u01/app/grid
[root@abc-defgh1 ~]# srvt cl config scan
SCAN name: abc-defgh-scan.xxxxx.xxxxxx.oraclevcn.com, Network: 1
Subnet IPv4: 10.0.1.0/255.255.255.0/bondeth0, static
Subnet IPv6:
  SCAN 1 IPv4 VIP: 10.0.1.33
  SCAN VIP is enabled.
  SCAN VIP is individually enabled on nodes:
  SCAN VIP is individually disabled on nodes:
  SCAN 2 IPv4 VIP: 10.0.1.32
  SCAN VIP is enabled.
  SCAN VIP is individually enabled on nodes:
  SCAN VIP is individually disabled on nodes:
  SCAN 3 IPv4 VIP: 10.0.1.31
  SCAN VIP is enabled.
  SCAN VIP is individually enabled on nodes:
  SCAN VIP is individually disabled on nodes:
[root@ abc-defgh2 ~]# srvt cl config vip -node `hostname -s`
VIP exists: network number 1, hosting node abc-defgh1
VIP Name: abc-defgh1-vip.xxxxx.xxxxxx.oraclevcn.com
VIP IPv4 Address: 10.0.1.29
VIP IPv6 Address:
VIP is enabled.
VIP is individually enabled on nodes:
VIP is individually disabled on nodes:
[root@ abc-defgh2 ~]# srvt cl config vip -node `hostname -s`
VIP exists: network number 1, hosting node abc-defgh2
VIP Name: abc-defgh2-vip.xxxxx.xxxxxx.oraclevcn.com
VIP IPv4 Address: 10.0.1.30
VIP IPv6 Address:
VIP is enabled.
```
VIP is individually enabled on nodes:
VIP is individually disabled on nodes:

The node virtual IP addresses are required during the next run of SWPM, in which the database will be created and loaded.

Adjust SAPDBHOST

Edit /sapmnt/<SAPSID>/profile/DEFAULT.PFL to adjust the SAPDBHOST parameter to the node where SWPM will be run.

```
SAPDBHOST = abc-defgh1
j2ee/dbtype = ora
j2ee/dbname = MFG
j2ee/dbhost = abc-defgh1
```

Run orabtt

As the oracle user, run the orabtt script on each compute node, having the proper environment set. In this example, MFG is used as the SAPSID. Adjust SAPSID according to your environment.

```
[oracle@nodeN] $ export ORACLE_HOME=/oracle/MFG/18 or
[oracle@nodeN] $ export ORACLE_HOME=/oracle/MFG/122 or
[oracle@nodeN] $ export ORACLE_HOME=/oracle/MFG/121
[oracle@nodeN] $ORACLE_HOME/sap/orabtt/orabtt.sh -add -dbsid MFG
```

Verify as follows:

```
[oracle@nodeN] $ORACLE_HOME/bin/orabase
```

The output should return /u02/app/oracle.

Check /etc/oratab

Oracle CRS activity in the patching phase might destroy entries in /etc/oratab. For each Exadata compute node, verify that the Grid Home is present in /etc/oratab. If it is not, add it:

```
+ASM1:/u01/app/19.0.0.0/grid:N
+ASM2:/u01/app/19.0.0.0/grid:N
```

Ensure That ASCS Is Up at node0

As the root user, ensure that the tmp resource is at node0:

```
[root@node0] # . oraenv [+ASM1]
[root@node0] # crsctl relocate res tmp -n <node0>
```
As the SIDADM user, run the following command:

```
node0: mfgadm> sapcontrol -nr 00 -function GetProcessList
```

If an error occurs or the connection is refused, run the following commands:

```
node0: mfgadm> sapcontrol -nr 00 -function StartService MFG
node0: mfgadm> sapcontrol -nr 00 -function Start
node0: mfgadm> sapcontrol -nr 00 -function GetProcessList
```

Invoke SWPM as the Root User

Run the following command:

```
[root@node0 ~] # export TMP=/usr/sap/tmp
[root@node0 ~] # </path/to/SWPM/>sapinst
```

Provide the `stack.xml` file as an option if required.

For disk groups, choose +DATAC1 and +RECOC1.

At the Oracle RAC Parameters screen, Init.ora RAC parameters, adjust the following values (MFG is used an example; adjust accordingly):

```
MFG001.local_listener = node0-vip:1521
MFG002.local_listener = node1-vip:1521
```

Also perform this step for any additional compute nodes that are being used.

When SWPM (patch level 27 and later) asks for encryption of tablespace, choose TDE for each tablespace listed by SWPM. This step is mandatory; all data in the Oracle Cloud must be encrypted. If you are installing with an SWPM version that does not support TDE or you are installing a 12.1 or 12.2 database, encryption must be implemented as a post-installation task.

At the end of this step, SWPM has finished creating your SAP database and created an `init<SIDxxx>.ora` and password file under `$ORACLE_HOME/dbs` on the first compute node. These files must be created on all sequent compute nodes later on.

The database is left in a shutdown state. Start it before running `catsbp` in the next step. For example:

```
[root@node0 ~]# su - oracle
[oracle@node0 ~] $ . oraenv MFG
ORACLE_SID = [oracle] ? MFG
The Oracle base has been set to /u02/app/oracle
[oracle@node0 ~] $ export ORACLE_SID=MFG001
[oracle@node0 ~] $ sqlplus / as sysdba
```
Connected to an idle instance.

SQL> startup
ORACLE instance started.

Total System Global Area 3.7407E+10 bytes
 Fixed Size 29900600 bytes
 Variable Size 1.9059E+10 bytes
 Database Buffers 1.8119E+10 bytes
 Redo Buffers 199069696 bytes
Database mounted.
Database opened.

Run the RDBMS Post-Installation Steps from Patching

From the SAP Bundle Patch README, run catsbp after setting the required environment variables.

Configure Object Storage

Oracle Cloud Infrastructure Object Storage can be consumed as a durable, efficient, and fast destination for backups, and consequently, a restore and recovery source. In contrast to classic file systems, the interface to Object Storage is provided by an SBT_LIBRARY to Recovery Manager (RMAN). Step-by-step instructions for non-SAP databases are at Backing Up a Database, and at least Java 7 is required to install. This creates the auto-open wallet with the default location of the oracle OS user, ~oracle/hsbtwallet/cwallet.sso.

This auto-open wallet is different from and has nothing in common with the auto-open wallet used for TDE. It is used to establish a passwordless link between a Swift Object Store and the compute node.

This link has the following effects:

- If your cwallet.sso is lost and you can’t restore it for any reason, re-create it with the Swift password.
- If you lose your Swift password, get a new one and re-create the cwallet.sso.
- If you lose both your cwallet.sso and your Swift password, create a new Swift password and re-create the wallet.
- You must delete old, unused, unknown Swift passwords.
- You can back up multiple databases into a bucket.
You can have multiple buckets configured. Consider changing the configuration file (config_db_name, the /lib storage, and the wallet directory). Before you perform any operation, you must adjust RMAN’s configuration as follows:

```
CONFIGURE CHANNEL DEVICE TYPE 'SBT_TAPE' PARMS
'SBT_LIBRARY=/home/oracle/lib/libopc.so,
SBT_PARMS=(OPC_PFILE=/home/oracle/config2)';
```

Using Oracle Exadata Cloud Service, you can consume Object Storage as a backup target and source for restore and recovery. However, with SAP databases, you cannot use the method provided at Backing Up an Exadata Database. Instead, you must follow the following method:

- **Configure an auth token** in the Oracle Cloud Infrastructure Console for an account name (impersonalization).
- Configure an Object Storage bucket.

Perform the following steps:

1. Install the needed drivers for RMAN, and then perform this action on each compute node as the oracle user:

   ```
   [oracle@nodeN] $ mkdir cloud_backup ; cd /var/opt/oracle/ocde/assistants/bkup
   [oracle@nodeN] $ cp opc_installer.zip.local ~oracle/cloud_backup
   [oracle@nodeN] $ cd ~/cloud_backup ; unzip opc_installer.zip.local
   [oracle@nodeN] $ mkdir ~/hsbtwallet ; mkdir ~/lib
   ```

2. Check the installation options for opc_install.jar (java is in your $PATH at user oracle):

   ```
   [oracle@nodeN] $ java -jar opc_install.jar
   ```

3. Invoke the installer with your tenant, user, bucket, and auth token on each node as the oracle user:

   ```
   [oracle@node0] $ java -jar opc_install.jar -opcId 'user@domain' -opcPass 'authtoken' -container <bucketname> -host https://swiftobjectstorage.us-phoenix-1.oraclecloud.com/v1/<my_tenancy> -walletDir ~/hsbtwallet -libDir ~/lib -configfile ~/config
   ```
4. Configure RMAN to consume the object storage (have the proper environment for your DBSID set):

 [oracle@node0] $ rman target /
 RMAN> CONFIGURE CHANNEL DEVICE TYPE 'SBT_TAPE' PARMS 'SBT_LIBRARY=/home/oracle/lib/libopc.so,
 SBT_PARMS=(OPC_PFILE=/home/oracle/config)';
 RMAN> CONFIGURE DEFAULT DEVICE TYPE TO SBT_TAPE;
 RMAN> CONFIGURE BACKUP OPTIMIZATION ON;
 RMAN> CONFIGURE CONTROLFILE AUTOBACKUP ON;
 RMAN> CONFIGURE CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE SBT_TAPE TO '%F';
 RMAN> CONFIGURE ENCRYPTION FOR DATABASE ON;

5. Set parallelism, which speeds up backup and restore activities:

 RMAN> CONFIGURE DEVICE TYPE 'SBT_TAPE' PARALLELISM 16;

 You are ready to run a backup. The following step is a test.

 RMAN> BACKUP INCREMENTAL LEVEL 0 SECTION SIZE 512M DATABASE PLUS
 ARCHIVELOG;
 RMAN> restore database validate check logical;

6. On the remaining hosts, confirm their settings after connecting with RMAN, and adjust parameters if needed:

 RMAN> show all;

Now you can perform RMAN backups.

Finish the Database Installation

Perform the following steps to finish the database installation.

Verify SIDADM and ORASID Shell Environments

Because of a bug in SWPM, it is possible that shell environment variables are not properly set. Especially check if ORACLE_SID is set properly and reflects the correct thread number for Oracle RAC (for example, ORACLE_SID=MFG001 for node 1 and MFG002 for node 2).

For each compute node, log in as the SIDADM user and verify the correct settings for the Oracle-related settings. For example:

 nodeN: mfgadm> env | grep ORACLE

If needed, adjust in the corresponding profiles.
For each compute node, log in as the ORASID user and verify the correct settings for the Oracle-related settings. For example:

```
nodeN: oramfg > env | grep ORACLE
```

If needed, adjust in the corresponding profiles.

Configure Database Linux Huge Pages

Huge pages configuration is provided for the out-of-the-box database but not for custom sizing of the SAP database that is created from SWPM. Therefore, you must run the `hugepages` script provided by MOS Note: 401749.1 when all required databases are up and running and all not-required databases are down. Adjust the value for `vm.nr_hugepages` in the `/etc/sysctl.conf` file for each compute node accordingly. To use the new huge pages configuration, shut down the SAP systems and all databases, and reboot the nodes.

Check the database instance's `alert_<DBSID>.log` to determine whether all huge pages have been allocated by the database instance.

Adjust Database Parameters

In addition to the parameters set during installation and patching, adjust your database parameters according to one of the following SAP Notes:

- SAP Note 2660007 – Oracle Database Parameter 12.2 / 18c
- SAP Note 2470718 - Oracle Database Parameter (12.2)
- SAP Note 2378252 - Oracle Database Initialization Parameters for SAP NetWeaver Systems (for Oracle 12.1)

Configure HA-NFS for /sapmnt

Follow the instructions in MOS 1934030.1 - ODA (Oracle Database Appliance): HowTo export ACFS (cloudfs) using HANFS.

1. On all compute nodes, run the following commands as root, with a Grid Infrastructure environment set:

```
[root@nodeN] # systemctl enable rpcbind ; systemctl enable nfs-server
[root@nodeN] # systemctl start rpcbind ; systemctl start nfs-server
[root@nodeN] # chkconfig --list | grep "nfs\|rpcbind"
```
2. On the first node only, run the following commands:

```
[root@node0] # srvctl add havip -id hanfsvip_id -address hanfs -netnum 1 -
       description "hanfs"
[root@node0] # srvctl add exportfs -id hanfsvip_id -path /sapmnt -name
       hanfs -options "rw,sync,no_root_squash" -clients <ip1,ip2,ip3,…>
[root@node0] # srvctl start havip -id hanfsvip_id
```

3. Check the status, location, and configuration of the HA-NFS virtual IP by running the following commands as root:

```
[root@node0] # srvctl status exportfs -id hanfsvip_id
export file system hanfs is enabled
export file system hanfs is exported on node node0
```

Prepare for SAP BR*Tools

A previous section described how to integrate Oracle RMAN with Oracle Cloud Infrastructure Object Storage. This section describes how to integrate BR*Tools. BR*Tools must be at version 7.40 PL 32 or later. Earlier versions are not supported.

1. On each compute node, edit the `/oracle/<DBSID>/sapprof/init<DBSID>.sap` file (for example, `/oracle/MFG/sapprof/initMFG.sap`), and make following changes on each compute node:

```
 rman_channels = 16
 backup_dev_type = rman_disk
 rman_sectionsize = 512M
 rman_parms = "SBT_LIBRARY=/home/oracle/lib/libopc.so,SBT_PARMS=(OPC_PFILE=/home/oracle/config)"
```

Note: The steps described here are for passwordless operation of BR*Tools. With Oracle 12.1 and later, the `remote_os_authent` parameter defaults to FALSE. Therefore, BR*Tools needs to connect either with a dedicated user or by using SAP Secure Store; connections made with / don’t work.

On Exadata Cloud Service, the Oracle ASM instance is running as a user grid that cannot write to directories owned by oracle:oinstall. Because of this, BR*Tools requires a 775 umask instead of 755 to allow the Oracle ASM instance to copy files to directories owned by oracle:oinstall.

Set the following parameter in `/oracle/<DBSID>/sapprof/init<DBSID>.sap`. For example, edit `/oracle/MFG/sapprof/initMFG.sap` and append `_file_mask = 002`.
2. On each compute node as the oracle user, verify that $ORACLE_HOME/dbs contains the appropriate init<DBSID><index>.ora file. If it does not, create it.

 Following the previous examples, this file needs to be initMFG001.ora on node0, initMFG002.ora on node1, and so on. The content of the init<DBSID><index>.ora file is always identical:

   ```
   #Generate init_sid.ora for ASM spfile
   spfile = (+DATAC1/MFG/spfileMFG.ora)
   ```

3. At the same location for each node, as the oracle user, you need a password file, orapw. Set the environment to the current DBSID, and then run the following commands, replacing MFG with the correct ID. The following example demonstrates Oracle 18.6; if you are in an ORACLE_HOME running Oracle 12.2 or 12.1, replace 18 with 122 or 121.

   ```
   $ cp /oracle/MFG/18/dbs/orapwMFG /oracle/MFG/18/dbs/orapw
   $ scp /oracle/MFG/18/dbs/orapw
   ```

4. Repeat the scp commands for additional compute nodes, if needed.

5. Ensure that all database instances can be started up properly using srvctl.

   ```
   $ su - oracle
   $ . oraenv
   ORACLE_SID = [oracle] ? MFG
   The Oracle base has been set to /u02/app/oracle
   $ srvctl stop database -db MFG
   $ srvctl start database -db MFG
   ```

6. Invoke sqlplus / as sysdba, and run the following commands on one host only:

 SQL> create user brt$adm identified by "somestrongpassword";

7. Invoke sqlplus / as sysdba, and run the following commands on all compute nodes to update each Oracle password file with the required grants:

 SQL> grant sapdba to brt$adm;
 SQL> grant sysdba, sysoper to brt$adm;

 All the commands need to succeed. If they do not, fix the password file.

8. On each host, run the following commands:

   ```
   $ cd /oracle/MFG ; mkdir -p security/rsecssfs ; cd security/rsecssfs
   $ mkdir key data ; cd /oracle/MFG ; chmod 700 -R security
   ```

9. Switch to SIDADM from root, for example, su - mfgadm.
10. On each compute node, run the following command:

```bash
nodeN: mfgadm> brconnect -u / -c -f chpass -o 'BRT$ADM' -p 'somestrongpassword'
```

```
BR0801I BRCONNECT 7.40 (32)
```

```
BR0280I BRCONNECT time stamp: 2018-03-08 11:30:09
BR0828I Changing password for database user BRT$ADM ...
```

```
BR0280I BRCONNECT time stamp: 2018-03-08 11:30:10
BR0829I Password changed successfully in database for user BRT$ADM
```

```
BR0828I BRCONNECT time stamp: 2018-03-08 11:30:16
```

```
BR0802I BRCONNECT completed successfully
```

11. (Optional) Verify the proper operation of other BR*Tools:

```bash
nodeN: mfgadm> brspace -u // -c force
nodeN: mfgadm> brbackup -u // -q
nodeN: mfgadm> brarchive -u // -q
```

Set Up High Availability for SAP Central Services

Use the latest `sapctl` package from SAP Note 1496927, which is version 10.0 Patch 0 or later.

Before invoking the `sapctl create` command, you must remove the temporary resource for the ASCS HA IP, `tmp`, that you created earlier. To do this, shut down ASCS, as follows:

```bash
nodeN: mfgadm> sapcontrol -nr 00 -function Stop
```

```
[root@node0] # . oraenv [+ASM1]
[root@node0] # crsctl stop res tmp
[root@node0] # appvipcfg delete -vipname=tmp
```
After deploying sapct1 according to the instructions in SAP Note 1496927, run the following commands, replacing MFG with the correct SAPSID:

```
[root@node0] # /usr/sap/sapctl/bin/sapct1 create -sapsid MFG -if bondeth0 -nm 255.255.255.0 -net 10.0.1.0 -nodes node0,node1 -abapenv ASCS00 -abapvip 10.0.1.241 -abapmsport 3900 -abaprep ERS01 -aersvip 10.0.1.242 -nx 1
[root@node0] # /usr/sap/sapctl/bin/sapct1 start all -sapsid MFG
```

Install the Primary Application Server

This section provides instructions for installing the SAP Primary Application Server (PAS).

1. Relax the Password Policy
2. Edit /etc/hosts
3. Use Block Storage or Local NVMe Storage
4. Ensure that /usr/sap Is Not in the Boot Partition
5. Stop the Local Firewall
6. Mount /sapmnt from HA-NFS
7. Install Additional Software Packages
8. Start the uuidd Daemon
9. Provide a Strong Password for the opc User
10. Configure and start vncserver
11. Install SAP PAS
12. Configure the SAP GUI

Relax the Password Policy

Before performing the following steps, create a backup of the /etc/pam.d/system-auth file and keep it safe for later restoration.

Make the following changes to the /etc/pam.d/system-auth file:

- Remove `use_authtok` from the lines starting with `password requisite` `pam_pwhistory.so` and `password sufficient` `pam_unix.so`.
Edit /etc/hosts

Edit the /etc/hosts file with the IP addresses for the following items:

- Exadata compute nodes, node virtual IP addresses, and SCAN names
- Virtual IP address for HA-NFS
- Short hostname for the PAS host itself

For example:

```
10.0.1.26 sape2eappl
10.0.1.19 node0
10.0.1.20 node1
10.0.1.21 node0-vip
10.0.1.22 node1-vip
10.0.1.23 scan-vip
10.0.1.24 scan-vip
10.0.1.25 scan-vip
10.0.1.241 ascsmfg
10.0.1.242 ersmfg
10.0.1.243 hanfs
```

Use Block Storage or Local NVMe Storage

Supported Oracle Cloud Infrastructure shapes need some file system storage in which to store SAP software. In the smallest supported shape, only Oracle Cloud Infrastructure Block Volume storage is available. Create one or more file systems according to the Linux documentation.

Ensure that /usr/sap Is Not in the Boot Partition

Earlier in this document, when setting up the Exadata compute nodes, you created a file system /u02, and then linked /usr/sap to /u02/sap. Do the same for the primary application server, as follows:

```
[root@pas] # mkdir /u02/sap ; ln -s /u02/sap /usr/sap
```

Stop the Local Firewall

Run the following command to stop the local firewall:

```
[root@pas] # systemctl stop firewalld ; systemctl disable firewalld
```

Mount /sapmnt from HA-NFS

1. Run the following command:

```
[root@pas] # mkdir /sapmnt ; mount -t nfs hanfs:/sapshare/sapmnt /sapmnt
```
2. Edit /etc/fstab to add /sapmnt:

```
hanfs:/sapshare/sapmnt /sapmnt nfs rw,bg,nosuid 0 0
```

3. Save and exit the file.

Install Additional Software Packages

Run the following commands:

```
[root@pas] yum -y groupinstall "Base" "Compatibility Libraries" "Debugging Tools"
"Directory Client" "Hardware Monitoring Utilities" "Large Systems Performance"
"Perl support" "Storage Availability Tools" "X window system" "Development tools"
[root@pas] yum -y install tigervnc-server liberation-mono-fonts gnome-session
    gnome-terminal gnome-screensaver gnome-panel compat-libstdc++-33 compat-libcap1
    libaio-devel ksh uuidd vim parted xorg-x11-xauth xclock
```

Start the uuidd Daemon

1. Start the uuidd daemon and ensure that it comes up at system startup:

```
[root@pas] systemctl start uuidd ; systemctl enable uuidd
```

2. Adjust the SELinux setting. Edit /etc/selinux/config and change SELINUX=enforcing to SELINUX=permissive.

3. Adjust the time zone to match the Exadata compute nodes. Link /etc/localtime to your OS time zone file (Europe/Berlin in the following example):

```
[root@pas] # ln -sf /usr/share/zoneinfo/Europe/Berlin /etc/localtime
```

4. Start ntpd and configure it to start automatically:

```
[root@pas] # systemctl start ntpd ; systemctl enable ntpd
```

5. Reboot.

Provide a Strong Password for the opc User

This step is required only if you plan to use X-Windows on the PAS compute node (for example, for SAPPhidinGUI). To work with X-Windows, the opc user should require a strong password to unlock the X screensaver.

Run the following command and set a strong password:

```
[opc@pas] $ passwd
```

Note the password and keep it handy.
Configure and start vncserver

This step is required only if you plan to use X-Windows with VNC server on the PAS compute node (for example, for SAPPlatinGUI). Follow the instructions in Configuring a VNC Server.

Install SAP PAS

1. As root, change the password for yourself on each compute node. SWPM asks for authentication:

   ```bash
   [root@pas] # passwd root
   ```

 Current versions of SWPM run in browser mode. To access the SWPM user interface with your browser, you must enable the respective port reported to you in the VCN’s security list via the Oracle Cloud Infrastructure Console. For example:

 - `source=0.0.0.0/0` (restrict if you can for outside access)
 - `source ports=any`
 - `IP protocol=TCP`
 - `destination port=4237` (the port from the `sapinst` URL)

2. Run SWPM:

   ```bash
   [root@pas] # mkdir -p /usr/sap/tmp ; export TMP=/usr/sap/tmp ;
   [root@pas] # cd /path/to/extracted_SWPM ; ./sapinst
   SAPINST_GUI_HOSTNAME=<pas-hostname>
   ```

 Optionally, you can provide a `stack.xml` file if you have created one.

 The URL for your browser is displayed.

3. Invoke an SAP recommended browser with the following URL:

   ```text
   ```

4. When prompted, confirm a security exception.

5. At the authentication dialog box, enter the user root and its password.

6. When you are prompted to run a script as the oracle user on the Exadata compute nodes, perform the following steps:

 A. In a separate shell, copy the script to one of the Exadata compute nodes.

 B. Connect to the node and change the ownership and permission of the script to `oracle:oinstall` and `770`.
C. Switch to the oracle account, set the environment for the given ORACLE_HOME, and execute the script.

7. In SWPM, click to continue the installation of PAS.

Configure the SAP GUI

Install and configure SAP GUI for Java on the bastion host that is running Oracle Linux. With the unified SAP front end, you can connect to SAP NetWeaver ABAP installations. Details are described in SAP Note 146505 and on the SAP Community Wiki.

SAP GUI for Java needs configuration information about your SAP environment, such as the names and addresses of your SAP servers. Based on this information, a connection directory is created that contains all available connections that can be selected in the SAP logon list. This directory can be centrally stored on a web server, and only a URL needs to be configured in SAP GUI for Java. Preset configuration and options can be distributed as templates during the initial installation process, so that a manual configuration after a first installation of SAP GUI for Java is not required. Access to the SAP ports for the connection needs to be created in the security lists.

Revert Changes on the Exadata Compute Nodes and the SAP Application Servers

Now that installation is complete, make the following configuration changes:

- Revert the changes to password policies on the Exadata compute nodes and the SAP Application Servers. Namely, restore their backups, such as /etc/pam.d/system-auth.
- If you added SSH keys that were needed for installation purposes only to the authorized_keys file or key files, delete them, and take extra care doing so.
- Modify your VCN’s security lists to close routes that were needed solely for installation. For example, remove destination port 4237 used for sapinst HTTPS installation.

Enable Transparent Data Encryption for All Tablespaces

To protect your database in the cloud, you must enable Transparent Data Encryption (TDE) by using one of the following methods:

- Installing with SWMP (patch level 27 or later) and Oracle Database 18c. This combination allows you to install with TDE enabled.
- Using an earlier SWPM or database version, which requires you to enable TDE as a post-installation task.
Relink Oracle Home

Note: This step applies for only Oracle Database 12.1, Oracle Database 12.2, or Oracle Database 18c with an SWPM patch level earlier than 27.

On all compute nodes, as the `oracle` user with the proper Oracle home set (/oracle/<SAPSID>/121 for a 12.1 home, /oracle/<SAPSID>/122 for a 12.2 home, or /oracle/<SAPSID>/18 for an 18.x home), stop the databases and run the following command:

```
[oracle@nodeN] $ cd $ORACLE_HOME/rdbms/lib ; make -f ins_rdbms.mk cloud_on
```

Oracle Database 18c

Starting with SWPM patch level 27, in combination with Oracle Database 18c, TDE is supported by SWPM and mandatory. SWPM installs an encrypted database by default.

Oracle Database 12c

For Oracle Database 12c, we recommend that you follow [SAP Note 2591575](#). If you choose to create a file-based encryption wallet, we recommend that you configure a location on Oracle ASM, too, as shown earlier.

For example, specify your encryption wallet location in SQLNET.ORA on the client and server.

```
ENCRYPTION_WALLET_LOCATION =
 (SOURCE= (METHOD=FILE)
  (METHOD_DATA= (DIRECTORY=+DATA1/MFG/orawallet/tde)))
```

SAP Bundle Patch for Oracle Database Exadata Cloud Service: Life Cycle Management for SAP Databases

An Oracle Database Exadata Cloud Service instance requires regular patching at several levels of its software stack:

- Oracle RDBMS software
- Oracle Grid Infrastructure software for systems that do not have the most recent software installed.
- Oracle Database Exadata Cloud Service tooling
- Exadata Image (OS)
This section describes how to install patches for the preceding components of an Exadata Cloud Service instance running databases for SAP applications. For more general information about Exadata Cloud Service versions and patches, see My Oracle Support Note 2333222.1 (Exadata Cloud Service Software Versions).

Oracle manages some components of the Exadata Cloud Service:

- Exadata Storage Server hardware (Cell), firmware, and software
- Exadata Database Server hardware, firmware, and the Oracle Virtualization Server (OVS) management domain (DOM0)
- InfiniBand (IB) switch hardware and firmware
- Power distribution units (PDU)

In all but exceptional circumstances, you will receive advance communication about updates to these components through the Cloud Notification Portal to help you plan for them. If there are corresponding recommended updates for your compute node virtual machine environment, Oracle will also provide notification about these. You cannot opt out of updates. For more information, see My Oracle Support Note 2124174.1 (Oracle Database Cloud Exadata Service Supported Software Versions and Planning for Updates).

Any updates to the preceding components are done by Oracle in a rolling manner. However, because of limitations in Oracle's connection handling, such a rolling update is not transparent to the SAP applications connected against the Exadata Cloud Service databases. Oracle therefore strongly recommends shutting down any SAP applications during an update of these components, if the update requires the shutdown of nodes of your Exadata Cloud Service instance.

Installation of Patches for Oracle RDBMS Software

An Oracle Database Exadata Cloud Service instance requires the following bundle patch for an update of its grid infrastructure and RDBMS components (the patch versions shown are current at the time of this writing):

- SAP Bundle Patch 18.6.0.0.0 – 201905 for Exadata Cloud Service
- SAP Bundle Patch 12.2.0.1.0 - 201905 for Exadata Cloud Service
- SAP Bundle Patch 12.1.0.2.0 - 201905 for Exadata Cloud Service

Oracle regularly tests and certifies these patches and their successors for SAP databases and makes them available for SAP customers on My Oracle Support or the SAP Service Marketplace.
You can find up-to-date release information about the patches and their download locations in the following SAP Notes:

- SAP Note 2660062 - Oracle Exadata Cloud Service: Patches for 18c
- SAP Note 2618837 - Oracle Exadata Cloud Service: Patches for 12.2.0.1
- SAP Note 2618881 - Oracle Exadata Cloud Service: Patches for 12.1.0.2.

Note: Do not use the `exadbcpatchmulti` utility from the Exadata Cloud Service tooling to install any RDBMS patches. Install them following the instructions from the SAP Bundle Patch readme instead.

Ensure that the operating system environment requirements are fulfilled on all nodes of the Exadata Cloud Service instance as described in the “Operating System Environment Requirements” section of the SAP Bundle Patch readme.

Then, follow the instructions in the “SAP Bundle Patch Installation” section to install the SAP Bundle Patch for Exadata Cloud Service. This process usually includes the following steps:

1. Install the latest OPatch and MOPatch utilities.
2. Install the RDBMS patches in the RDBMS homes.
3. Run post-installation instructions, most notably the `catsbp` script.

Note: Depending on the content of the SAP Bundle Patch, its installation can be non-RAC-rolling. See the SAP Bundle Patch readme for more information.

Installation of Patches for the Oracle Database Exadata Cloud Service Tooling

To patch the Oracle Database Exadata Cloud Service Tooling, follow the steps in the Oracle Cloud Infrastructure documentation.

Installation of Operating System Patches

Use the tools and methods provided by the operating system to prepare and populate the yum repository with Exadata channel content. The method is outlined in the Oracle Cloud Infrastructure documentation.
High Availability with Oracle Data Guard

Oracle Data Guard provides additional high availability for the Oracle Database of an SAP installation with Exadata Cloud Service. Only physical standby is supported for an SAP environment. The physical standby database runs on a separate Exadata machine or Oracle Cloud Infrastructure Compute instance that fulfills the same SAP system requirements as the primary database, for example, identical operating system user and group IDs. The Oracle Database software must be installed by using the SWPM to the same location as the primary site (/oracle/<SID>) and run on the same release and patch level as the primary database. Ensure that you sufficiently test the reconnection of the SAP instances to the standby database.

For more information about using Oracle Data Guard in Exadata Cloud Service, see the Exadata Cloud Service documentation.

References

SAP

Most of the SAP links require SAP login credentials for access.

SAP Documentation

- SAP Product Availability Matrix (PAM)
- SAP Software Logistics Toolset (SL Tools)
- SAP Download Manager
- SAP Software Download Center (SWDC)
- SAP NetWeaver Guide Finder
- SAP Community Network - Oracle Community
- SAP Help Portal: TCP/IP Ports of All SAP Products

SAP Notes

- 2614028 - SAP NetWeaver on Oracle Database Exadata Cloud Service
- 2614080 - SAP on Linux with Oracle Database Exadata Cloud Service: Enhanced Monitoring
- 2474949 - SAP NetWeaver on Oracle Cloud Infrastructure
- 2660007 - Oracle Database Parameter 12.2 / 18c
- 2470718 - Oracle Database Parameter (12.2)
• 2378252 - Oracle Database Initialization Parameters for SAP NetWeaver Systems
• 2520061 - SAP on Oracle Cloud Infrastructure: Support prerequisites
• 1565179 - SAP software and Oracle Linux
• 2195019 - Linux: Using SAP kernel 7.48 and higher or SAPinst 7.49 and higher on RHEL6, OL6 and SLES11
• 1877857 - Installation and Configuration SAP HA ASCS/ERS on ODA
• 1635808 - Oracle Linux 6.x: SAP-Installation and Upgrade
• 1597355 - Swap-space recommendation for Linux
• 1770532 - HugePages on Linux for Oracle Database
• 1672954 - Oracle 11g and 12c: Usage of hugepages on Linux
• 1871318 - Linux: Disable Transparent HugePages for Oracle Database
• 146505 - SAP GUI for the Java Environment
• 1914631 - Central Technical Note for Oracle Database 12c Release 1 (12.1)
• 2470660 - Oracle Database Central Technical Note for 12c Release 2 (12.2)
• 2660020 - Central Technical Note for Oracle Database 18c
• 1868094 - Overview: Oracle Security SAP Notes
• 1996481 - Using correct hostnames for Oracle Exadata Database Nodes
• 1496927 - Protection of SAP instances through Oracle Clusterware
• 2591575 - Using Oracle Transparent Data Encryption (TDE) with SAP Netweaver
• 1598594 - BR*Tools configuration for Oracle installation using user "oracle"
• 113747 - Owners and authorizations of BR*Tools
• 776505 - ORA-01017/ORA-01031 in BR*Tools on Linux and Solaris 11
• 2618837 - Oracle Exadata Cloud Service: Patches for 12.2.0.1
• 2618881 - Oracle Exadata Cloud Service: Patches for 12.1.0.2
• 2660062 - Oracle Exadata Cloud Service: Patches for Oracle 18c

Oracle

• Oracle Database Exadata Cloud Service
• Oracle Cloud Infrastructure – Exadata DB Systems
• Oracle Cloud Hosting and Delivery Policies
• Oracle Database
• Oracle Linux
- Oracle-SAP Solutions site
- MOS 1934030.1 - ODA (Oracle Database Appliance): HowTo export ACFS (cloudfs) using HANFS
Integrated Cloud Applications & Platform Services

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0819

SAP NetWeaver Application Server ABAP/Java on Oracle Database Exadata Cloud Service Based on Oracle Exadata X7
August 2019
Author: Oracle Corporation
Contributing Authors: Torsten Grambs, Markus Breunig, Jens Schmidt, Jan Kloikkers, Niloy Banerjee

Oracle is committed to developing practices and products that help protect the environment.